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Overview

The following notions are introduced in Banach / Hilbert space settings.

Range inclusion of operators

Majorization of operators

Factorization of operators.

We discuss famous Douglas Theorem (sometimes it is called Douglas’s
Range Inclusion Theorem) which tells existence of a close relationship
between the notions of range inclusion, majorization and factorization in
each of the following operators.

bounded operators on Hilbert spaces ;

bounded operators on Banach spaces ;

unbounded operators on Hilbert spaces.
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First Notion : Range Inclusion

Let X ,Y ,Z be Banach spaces. Let S ∈ B(X ,Y ) and T ∈ B(Z ,Y ). We
have subspaces R(S) and R(T ) in Y .

Suppose R(S) ⊆ R(T ) or R(T ) ⊆ R(S). [Range Inclusion]

We will find an operation equation involving the operators S and T , using
Douglas’ Theorem.
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Second Notion : Majorization

Definition 1.

Let X ,Y ,Z be Banach spaces. Let T ∈ B(X ,Y ) and S ∈ B(X ,Z ). We
say that T majorizes S (or, S is majorized by T ) if there exists M > 0
such that

‖Sx‖ ≤ M ‖Tx‖

for all x ∈ X .

If T majorizes S , then
N(T ) ⊆ N(S). (1)

In other words, majorizing operator has a smaller nullspace.

We shall prove that converse of (1) is also true when T has a closed range.
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Some Consequences of Majorization

We discuss first some consequences of the property “majorization”.
Assume that T ∈ B(X ,Y ).

If S1,S2 ∈ B(X ,Z ) and T majorizes S1 and S2, then T majorizes S1 + S2.

If S ∈ B(X ,Z ), R ∈ B(Z ,W ) and T majorizes S , then T majorizes RS .
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Some Consequences of Majorization

In particular, when all the operators involved are in B(X ), then the set of
operators majorized by T is a left ideal of B(X ). That is,

AT =
{
S : S is majorized by T

}
is a left ideal of B(X ).
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Some Consequences of Majorization

Proposition 2.

Let T ∈ B(X ,Y ),S ∈ B(X ,Z ) and R ∈ B(X ,W ). If T majorizes S and
S majorizes R, then T majorizes R.
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Characterization

Proposition 3.

Assume that T ∈ B(X ,Y ) and S ∈ B(X ,Z ). The following statements
are equivalent:

1. T majorizes S .

2. whenever {xn} ⊆ X with ‖Txn‖ → 0 then ‖Sxn‖ → 0.

3. there exists V ∈ B(R(T ),Z ) such that S = VT .
FA-1(P-76)P-1

Exercise 4.

Let M be a subspace of a normed space X and T be a continuous linear
operator from M to a Banach space Y . Prove that T can be extended
continuously from M to its closure, M. Moreover, the extended operator
has norm as with the norm of T .
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Characterization for Closed Range

For T ∈ B(X ,Y ), define QT : X → X/N(T ) (called quotient operator)
by

QT (x) = x + N(T ).

Then T has closed range iff there exists M > 0 such that

‖QT (x)‖ = ‖x + N(T )‖ ≤ M ‖Tx‖, for all x ∈ X .

Hence by the terminology of majorization, we have the following
characterization for an operator to have closed range.

Proposition 5.

R(T ) is closed iff T majorizes QT .

Any operator majorizing its quotient operator always has a closed range.
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Majorization

We have observed that if T majorizes S , then N(T ) ⊆ N(S). The
converse is not true, in general.

Example 6.

Consider X = `2. Let T : `2 → `2 be defined by

T (x1, x2, . . .) =
(
x1,

x2
2
,
x3
3
, . . .

)
and S = I , the identity operator. Here N(T ) = N(S) = {0}.
Suppose that T majorizes I . Then T has a closed range, a contradiction.

But the converse is true when T has a closed range.

Proposition 7.

Assume that T ∈ B(X ,Y ) with R(T ) closed. If S ∈ B(X ,Z ) has
N(T ) ⊆ N(S), then T majorizes S . FA-1(P-97)P-5
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Majorization

Suppose that T majorizes S .

If an operator (S , or T ) has a “property”, does the another operator have
the same property?

Proposition 8.

Assume that T ∈ B(X ,Y ), S ∈ B(X ,Z ) and that T majorizes S . That is,
‖Sx‖ ≤ M ‖Tx‖, for all x ∈ X .

1. If R(S) is closed and N(T ) = N(S), then R(T ) is closed.

2. If T is compact, then S is also compact.
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Spectral Radius

Let T ∈ B(X ), let
r(T ) = lim

n→∞
‖T n‖1/n

denote the spectral radius of T .

Proposition 9.

Let T , S ∈ B(X ).

If T majorizes S and if TS = ST , then T n majorizes Sn, for n ≥ 1.

Also r(S) ≤ M r(T ). FA-1(P-79)P-3
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Spectral Radius

Definition 10.

Let X be a Banach space. An operator T ∈ B(X ) is said to be
quasinilpotent operator if σ(T ) = {0}.

Example 11.

Let H = `2. Define T : `2 → `2 by

T (x1, x2, . . .) =
(

0,
x1
2
,
x2
22
, . . . ,

xn
2n
, . . .

)
.

Then T is quasinilpotent. FA-1(P-99)E-6

Proposition 12.

Assume that T ∈ B(X ,Y ), S ∈ B(X ,Z ) and that T majorizes S . If T is
quasinilpotent, then S is also quasinilpotent. FA-1(P-80)P-3a
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Third Notion : Factorization

Assume that S ∈ B(X ,Y ) and T ∈ B(X ,Z ).

Then S is a left multiple of T if there exists V ∈ B(Z ,Y ) with S = VT .

S is a right multiple of T if there exists U ∈ B(X ,Z ) with S = TU.

That is, if either S = VT or S = TU, we say that S is factored with
respect to T . If S and T have a common domain, we get a left
multiple of T for S . If S and T have a common co-domain, we get a
right multiple of T for S .
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Douglas Theorem for Bounded Operators on Hilbert
Spaces

We now discuss existence of a close relationship between the notions of
majorization, factorization and range inclusion for operators on a Hilbert
space.

Douglas1 discovered these relations in the study of an unpublished
manuscript of deBranges and Rovnyak.

1Douglas, R. G, On majorization, factorization, and range inclusion of operators on
Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
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Douglas Theorem for Bounded Operators on Hilbert
Spaces

In the following result, we shall see the equivalence of three notions in
the order : range inclusion, majorization and factorization.

Theorem 13 (Douglas, 1966).

Let A and B be bounded operators on a Hilbert space H. The following
statements are equivalent:

1. R(A) ⊆ R(B).

2. There exists M > 0 such that ‖A∗x‖ ≤ M ‖B∗x‖ for all x ∈ H.
That is, there exists M > 0 such that AA∗ ≤ M2 BB∗.

3. There exists a bounded operator C on H so that A = BC . FA-1(P-93)T-1

The plan of the proof is given below :

(1) =⇒ (3) =⇒ (1) and (2) =⇒ (3) =⇒ (2).
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Closed Graph Theorem

To prove the “Douglas Theorem” for Bounded Operators on Hilbert
Spaces, we use the closed graph theorem.

Theorem 14 (Closed Graph Theorem).

Let X and Y be Banach spaces and T : X → Y be linear. Then T is
bounded iff T is closed (the graph of T is closed).

P. Sam Johnson (NIT Karnataka) Douglas’s Range Inclusion Theorem 17 / 36



Easy Generalization

If we consider operators A and B with domains equal to the Hilbert spaces
H1 and H2, respectively, but having common range H, then we need only
to modify the statement of the theorem so that the operator C is now
defined from H1 to H2 to obtain parallel result for this case. The proof is
exactly the same.

Theorem 15.

Let H1, H2, H be Hilbert spaces. Let A ∈ B(H1,H) and B ∈ B(H2,H).
The following statements are equivalent:

1. R(A) ⊆ R(B).

2. There exists M > 0 such that ‖A∗x‖ ≤ M ‖B∗x‖ for all x ∈ H.
That is, there exists M > 0 such that AA∗ ≤ M2 BB∗.

3. There exists C ∈ B(H1,H2) so that A = BC .

P. Sam Johnson (NIT Karnataka) Douglas’s Range Inclusion Theorem 18 / 36



Douglas Theorem for Bounded Operators on Hilbert
Spaces

We proved the following Douglas’ Theorem for bounded operators on
Hilbert spaces.

Theorem 16 (Douglas, 1966).

Let A and B be bounded operators on a Hilbert space H. The following
statements are equivalent:

1. R(A) ⊆ R(B).

2. There exists M > 0 such that ‖A∗x‖ ≤ M ‖B∗x‖ for all x ∈ H.
That is, there exists M > 0 such that AA∗ ≤ M2 BB∗.

3. There exists a bounded operator C on H so that A = BC .
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Summary : Douglas Theorem for Bounded Operators on
Hilbert Spaces

We know that every Hilbert space operator A has an adjoint (denoted by
A∗) and A = A∗∗.

Let A and B be bounded operators on a Hilbert space H. The following
statements are equivalent:

1. R(A) is smaller than R(B).

2. A∗ is majorized by B∗.

3. If A is a right multiple of B (B is on
the left side, say, A = BC , for some
C).

1. R(A∗) is smaller than R(B∗).

2. A is majorized by B.

3. If A is a left multiple of B (B is on
the right side, say, A = CB, for some
C).
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The case in which the spaces X ,Y ,Z are Banach

An obvious question to ask is whether the Douglas theorem
generalizes to the case in which the spaces are Banach.

Let X ,Y ,Z be Banach spaces. Let A ∈ B(X ,Y ) and B ∈ B(Z ,Y ).

The condition for majorization

‖A∗x‖ ≤ M ‖B∗x‖

can be interpreted as
‖A∗y∗‖ ≤ M ‖B∗y∗‖

and all y∗ ∈ Y ∗.

Here Y ∗ is the dual space of Y .
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Notations

1. The dual space of X is denoted by X ∗.

2. For z ∈ Z and z∗ ∈ Z ∗, we denote z∗(z) for 〈z , z∗〉.
3. For S ∈ B(X ,Y ), S∗ ∈ B(Y ∗,X ∗) is the usual adjoint of S . Hence,

for x ∈ X , y∗ ∈ Y ∗, we write

〈Sx , y∗〉 = 〈x ,S∗y∗〉

instead of y∗(Sx) = S∗y∗(x).

4. N⊥ :=
{
x∗ ∈ X ∗ : x∗(s) = 0,∀s ∈ N

}
, for any N ⊆ X .

5. M⊥ :=
{
x ∈ X : m(x) = 0, ∀m ∈ M

}
, for any M ⊆ X ∗.

One can prove that if N1 ⊆ N2 ⊆ X , then N⊥1 ⊇ N⊥2 .

6. R(A)⊥ = N(A∗).
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Douglas Theorem for Bounded Operators on Banach
Spaces

In order to extend Douglas factorization theorem to Banach spaces,
generally speaking, one needs to consider the range inclusion of the adjoint
operators instead, rather than the operators themselves.

This was done by Embry2.

2Mary R. Embry, Factorization of operators on Banach space, Proc. Amer. Math.
Soc. 38(2) (1973), 587-590.
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Douglas Theorem for Bounded Operators on Banach
Spaces

We now prove that the Douglas theorem remains valid for adjoints of
operators on Banach spaces.

Theorem 17 (Embry, 1973).

Let A and B be bounded operators on a Banach space X . The following
statements are equivalent:

1. R(A∗) ⊆ R(B∗).

2. ‖Ax‖ ≤ M ‖Bx‖ for some M > 0 and all x ∈ X .

3. A = CB for some bounded operator C : R(B)→ X .
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Douglas Theorem for Bounded Operators on Banach
Spaces

The plan of the proof is given below :

(2) =⇒ (3) =⇒ (1) =⇒ (3) =⇒ (2).

Let us note first that this theorem indeed generalizes Douglas theorem. To
see this, let A = A∗ and B = B∗, which is possible since every Hilbert
space operator has an adjoint. Then the second and third statements in
the two theorems are identical.
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The condition

A = CB for some bounded operator C : R(B)→ X .

becomes

A∗ = CB∗ for some bounded operator C : R(B∗)→ X .

But since X is a Hilbert space, C has a continuous linear extension G on
X so that

A∗ = GB∗.

Thus
A = BG ∗

which retrieves the first statement of Douglas theorem for bounded
operators on Hilbert spaces.
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Does Douglas Theorem hold true on Banach Spaces ?

Let X ,Y ,Z be Banach spaces. Let A ∈ B(X ,Y ) and B ∈ B(Z ,Y ).

Let us discuss all possible relations among the following:

1. R(A) ⊆ R(B).

2. There exists M > 0 such that ‖A∗y∗‖ ≤ M ‖B∗y∗‖ for all y∗ ∈ Y ∗.

3. There exists a bounded operator C ∈ B(X ,Z ) so that A = BC .

“(3) =⇒ (1)” and “(3) =⇒ (2)” are obvious.

Proposition 18.

“R(A) ⊆ R(B)” =⇒ “A∗ majorized by B∗” is also always true. FA-1(P-80)P-4
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Uniform Boundedness Principle

To prove “R(A) ⊆ R(B)” =⇒ “A∗ majorized by B∗”, we use the
following well-known fundamental result.

Theorem 19 (Uniform Boundedness Principle).

Suppose X is Banach, Y is a normed space and A ⊆ B(X ,Y ). If A is
pointwise bounded, then A is uniformly bounded.

“R(A) ⊆ R(B)” =⇒ “A = BC (for some C )” is not true, in general.

We shall see an example, given by Douglas.

Proposition 20.

If N(B) is complemented, then “R(A) ⊆ R(B)” =⇒ “A = BC (for some
C )”. FA-1(P-86)
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Douglas’ Example

Douglas (unpublished manuscript) gave a counter example of bounded
operators A and B for which R(A) ⊆ R(B) is true but there is no operator
C such that A = BC . The example appeared in a paper of Embry M.R.
[1973].

Example 21.

Let X be a Banach space, N a subspace of X , and Y the set of bounded
functions on the integers so that

f (n) =

{
X when n ≤ 0

X/N when n > 0

Y is a Banach space with respect to

‖f ‖ = sup ‖f (n)‖.

FA-1(P-82)

P. Sam Johnson (NIT Karnataka) Douglas’s Range Inclusion Theorem 29 / 36



Douglas’ Example (contd...)

Consider the operators A and B on Y defined by

(Af )(n) =

{
f (n) for n = 1
0 for n 6= 1

and (Bf )(n) =

{
πf (0) for n = 1

f (n − 1) for n 6= 1
,

where π is the natural map from X to X/N.

Then R(A) ⊆ R(B).

Suppose that there exists an operator C on Y such that

A = BC .
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Douglas’ Example (contd...)

Let D1 be the map from X/N to Y and D2 the map from Y to X defined
by

(D1(x +N))(n) =

{
x + N for n = 1

0 for n 6= 1
and (D2f )(n) = f (0).

Hence E = D2CD1 is a map from X/N to X such that I− Eπ is a
bounded projection of X onto N.

Thus if we choose N to be a subspace for which no bounded projection
exists, then we arrive at a contradiction and see that there exists no
operator C on Y for which A = BC .

In the example, we have seen that there are operators A and B for
which R(A) ⊆ R(B) is true but there is no operator C such that
A = BC .
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“A∗ is majorized by B∗” =⇒ “R(A) ⊆ R(B)” is not true, in general.

Bouldin3 has given a counter example of bounded operators on a Banach
space for which “B∗ majorizes A∗” is true but “R(A) ⊆ R(B)” is false.

Example 22.

Define A and B on c0 by Aek = 0 for k 6= 1

Ae1 = y =
(1

2
,

1

22
, . . .

)
and

B(x1, x2, . . .) =
(x1

2
,
x2
22
, . . .

)
.

We have (c∗0 )∗ = `∗1 = `∞ and R(A∗∗) ⊆ R(B∗∗).

By Theorem (17), A∗ is majorized by B∗, That is, there exists some M > 0
such that ‖A∗f ‖ ≤ M‖B∗f ‖ for all f ∈ `1. But R(A) * R(B). FA-1(P-87)

3Richard Bouldin, A counterexample in the factorization of Banach space operators,
Proc. Amer. Math. Soc. 68 (3) (1978), 327.
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Proposition 23.

If Z is reflexive, then “A∗ majorized by B∗” =⇒ “R(A) ⊆ R(B)”. FA-1(P-89)

“A∗ majorized by B∗” =⇒ “A = BC (for some C )” is not true, in
general.

Proposition 24.

If Z is reflexive and N(T ) is complemented in Z , then “A∗ majorized by
B∗” =⇒ “A = BC (for some C )”.

FA-1(P-91)
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Douglas Theorem for Unbounded Operators on Hilbert
Spaces

Furthermore, Douglas extended the above result to the case of unbounded
operators on Hilbert spaces as follows.

Theorem 25.

Let A and B be closed densely defined operators on a Hilbert space H.
1. If AA∗ ≤ BB∗, there exists a contraction C so that A ⊂ BC .

(The statement AA∗ ≤ BB∗ is assumed to mean that DBB∗ ⊂ DAA∗ and for x ∈ DBB∗

we have 〈AA∗x , x〉 ≤ 〈BB∗x , x〉.)
2. If C is an operator so that A ⊂ BC , then R(A) ⊂ R(B).

3. If R(A) ⊂ R(B), then there exists a densely defined operator C so that A = BC and a
number M > 0 so that

‖Cx‖2 ≤ M{‖x‖2 + ‖A∗x‖2} for x ∈ DC .

Moreover, if A is bounded, then C is bounded and if B is bounded, then C is bounded.
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Consequences of Douglas Theorem

Several results on operators with closed range.

Existence of Moore-Penrose inverses of operators.

Rich theory on quotient of operators.

Operator theoretic approach in inequalities.

Study of perturbations of an operator by compact operators.
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